Experimental investigation on flow asymmetry in solid entrance region of a square circulating fluidized bed_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 7 no. 6 pp. 483-490 (December 2009)
doi: 10.1016/j.partic.2009.07.004

Experimental investigation on flow asymmetry in solid entrance region of a square circulating fluidized bed

Zhengyang Wang, Shaozeng Sun*, Hao Chen, Qigang Deng, Guangbo Zhao, Shaohua Wu

Show more

sunsz@hit.edu.cn

Abstract

To study the influence of back feeding particles on gas–solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m2 s), the back feeding particles were found to penetrate the lean gas–solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 = 4 m/s, Gs = 33 kg/(m2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 = 3.2 m/s) and Gs = 21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the fluidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of u0 = 4 m/s and Gs = 21 kg/(m2 s), addition of coarse particles (dp = 1145 μm) into the bed made the radial distribution of solids more symmetrical.

Keywords

Square circulating fluidized bed; Solid entrance region; Flow asymmetry; Experimental investigation