Size-dependent coalescence kernel in fertilizer granulation—A comparative study_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 7 no. 6 pp. 445-450 (December 2009)
doi: 10.1016/j.partic.2009.09.005

Size-dependent coalescence kernel in fertilizer granulation—A comparative study

Papiya Roya, *, Manish Vashishthaa, Rajesh Khannaa, Duvvuri Subbaraob

Show more

papiya.roy@gmail.com

Abstract

Granulation is a key process in several industries like pharmaceutical, food, fertilizer, agrochemicals, etc. Population balance modeling has been used extensively for modeling agglomeration in many systems such as crystallization, aerosols, pelletisation, etc. The key parameter is the coalescence kernel, β(i,j) which dictates the overall rate of coalescence as well as the effect of granule size on coalescence rate. Adetayo, Litster, Pratsinis, and Ennis (1995) studied fertilizer granulation with a broad size distribution and modeled it with a two-stage kernel. A constant kernel can be applied to those granules which coalesce successfully. The coalescence model gives conditions for two types of coalescence, Type I and II. A two-stage kernel, which is necessary to model granule size distribution over a wide size distribution, is applied in the present fluidized bed spray granulation process. The first stage is size-independent and non-inertial regime, and is followed by a size-dependent stage in which collisions between particles are non-random, i.e. inertial regime. The present work is focused on the second stage kernel where the feed particles of volume i and j collide and form final granule ij instead of i + j ( Adetayo et al., 1995) which gives a wider particle size distribution of granules than proposed earlier.

Keywords

Granulation; Coalescence kernel; Population balance