Modeling and simulation of chemically reacting flows in gas–solid catalytic and non-catalytic processes_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 8 no. 6 pp. 525-530 (December 2010)
doi: 10.1016/j.partic.2010.08.003

Modeling and simulation of chemically reacting flows in gas–solid catalytic and non-catalytic processes

Changning Wu, Binhang Yan, Yong Jin, Yi Cheng*

Show more

yicheng@tsinghua.edu.cn

Abstract

This paper gives an overview of the recent development of modeling and simulation of chemically reacting flows in gas–solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian–Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD–DEM or CFD–DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors. Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings. This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.

Graphical abstract

Image for unlabelled figure

Keywords

Gas–solid chemically reacting flow; Cross-scale modeling and simulation; Eulerian–Lagrangian scheme; Computational fluid dynamics (CFD); Discrete element method (DEM); Discrete phase model (DPM)