Hydrodesulfurization catalyst prepared by urea-matrix combustion method_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 10 no. 4 pp. 468-474 (August 2012)
doi: 10.1016/j.partic.2012.01.001

Hydrodesulfurization catalyst prepared by urea-matrix combustion method

Dongmei Jiaoa, b, Yeyong Mac, Fahai Caoa, *

Show more

fhcao@ecust.edu.cn

Abstract

Co–Mo/γ-Al2O3–TiO2 hydrodesulfurization (HDS) catalyst samples prepared by a urea matrix combustion (UMxC) method, were evaluated in a stainless tubular fixed-bed reactor, with thiophene, benzothiophene and dibenzothiophene in xylene as model feedstocks. The samples were pre-sulfurized using a cyclohexane solution of 3% CS2 and then tested for the HDS reaction. The test results were compared with catalysts prepared by conventional methods involving sequential impregnation (SI) and co-impregnation (CI). The catalysts were characterized using X-ray diffraction (XRD), laser Raman spectroscopy (LRS), high resolution transmission electron microscopy (HRTEM) and N2 physisorption, showing that the UMxC catalyst had higher pore volume and surface area than those prepared by the CI and SI methods. The UMxC method increased metal loading and avoided formation of inert phase, e.g., β-CoMoO4, for the HDS reaction, suggesting that UMxC method is superior to the conventional impregnation techniques. TiO2 promoter made particles on the catalyst surface closer and alleviated the interaction between molybdenum oxide and the support, and facilitated the formation of well-dispersed Co- and Mo-oxo species on catalyst surface, thus resulting in higher HDS catalytic activity than pure γ-Al2O3 support without modifiers. Consequently, the addition of TiO2 obviously improved the HDS conversion of dibenzothiophene.

Graphical abstract

Keywords

Hydrodesulfurization; Co–Mo catalyst; Al2O3–TiO2 support; Urea-matrix combustion method; Preparation