Flow properties of three fuel powders_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 10 no. 4 pp. 438-443 (August 2012)
doi: 10.1016/j.partic.2011.11.013

Flow properties of three fuel powders

Pan Chen*, Zhulin Yuan, Xianglin Shen, Yuanyuan Zhang

Show more

panchen326@163.com

Highlights

    ► The flow properties and powder physical properties were measured for three fuel powders. ► The flow functions of the three powders are located in different regions. ► Both particle size and moisture content significantly affect the flow properties. ► Applying Jenike's mathematical analysis for designing a hopper shows that this can occasionally produce unexpected value for the hopper opening size.

Abstract

Flow and physical properties were measured for three fuel powders: sawdust, brown coal and hard coal. Besides physical properties, e.g., particle size, bulk density and moisture content, flowability was investigated using the standard shear testing technique of the Jenike shear cell. Flow functions of the three powders used for characterization of bulk flow and design of hoppers were determined, and then compared and discussed. The flow functions of the three powders are located in different regions: while brown coal and hard coal were classified respectively as easy flowing and cohesive material, sawdust was found in regions varying from cohesive to easy flowing at low consolidation stress. The measured effective angle of internal friction and angle of wall friction were 55° and 31.4° for sawdust; 36.2° and 26° for brown coal; and 43.3° and 27.8° for hard coal. Using the measured powder flow properties, Jenike's procedure was then followed to estimate and compare the critical hopper dimensions for mass flow of the three powders.

Graphical abstract

Keywords

Powder flow function; Effective angle of internal friction; Angle of wall friction; Jenike shear cell; Particle distribution; Moisture content