Dispersion of nanodiamond and ultra-fine polishing of quartz wafer_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 2 no. 4 pp. 153-156 (August 2004)
doi: 10.1016/S1672-2515(07)60046-3

Dispersion of nanodiamond and ultra-fine polishing of quartz wafer

Yongwei Zhua,b,*, Zhijing Fenga, Baichun Wangb, Xianyang Xub,c

Show more

y.w.zhu@263.net

Abstract

Mechanochemical Modification (MCM) of nanodiamond surface with DN-10 was studied in relation to the performance of nanodiamond in polishing quartz wafers. Results show that the modified nanodiamond is more stable in the pH range 8∼11. A super smooth surface with an average roughness of 0.214 nm was achieved using a nanodiamond-based slurry regulated by N-(2-hydroxyethyl)ethylenediamine. It is suggested that the principal ultra-fine polishing mechanism of quartz wafer involves atom-level removal under the synergism of chemical and mechanical actions.

Keywords

nanodiamond; dispersion; mechanochemical modification; ultra-fine polishing; quartz wafer