An analytical solution for the population balance equation using a moment method_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 18 pp. 194-200 (February 2015)
doi: 10.1016/j.partic.2014.06.006

An analytical solution for the population balance equation using a moment method

Mingzhou Yua, b, Jianzhong Lina, *, Junji Caob, Martin Seipenbuschc

Show more

mecjzlin@zju.edu.cn

Highlights

    • An analytical model was proposed to solve the PBE due to Brownian coagulation. • The model was solved analytically in free molecular and continuum regimes under some criteria. • The model solutions were verified to be superior to existing models in efficiency and precision.

Abstract

Brownian coagulation is the most important inter-particle mechanism affecting the size distribution of aerosols. Analytical solutions to the governing population balance equation (PBE) remain a challenging issue. In this work, we develop an analytical model to solve the PBE under Brownian coagulation based on the Taylor-expansion method of moments. The proposed model has a clear advantage over conventional asymptotic models in both precision and efficiency. We first analyze the geometric standard deviation (GSD) of aerosol size distribution. The new model is then implemented to determine two analytic solutions, one with a varying GSD and the other with a constant GSD. The varying solution traces the evolution of the size distribution, whereas the constant case admits a decoupled solution for the zero and second moments. Both solutions are confirmed to have the same precision as the highly reliable numerical model, implemented by the fourth-order Runge–Kutta algorithm, and the analytic model requires significantly less computational time than the numerical approach. Our results suggest that the proposed model has great potential to replace the existing numerical model, and is thus recommended for the study of physical aerosol characteristics, especially for rapid predictions of haze formation and evolution.

Graphical abstract

Keywords

Self-preserving aerosols; Analytical solution; Taylor-expansion method of moments; Population balance equation