Simulations of sorbent regeneration in a circulating fluidized bed system for sorption enhanced steam reforming with dolomite_中国颗粒学会


Volurnes 48-51 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)


Partic. vol. 50 pp. 156-172 (June 2020)
doi: 10.1016/j.partic.2019.08.005

Simulations of sorbent regeneration in a circulating fluidized bed system for sorption enhanced steam reforming with dolomite

Kiattikhoon Phuakpunka,b, Benjapon Chalermsinsuwanc,d,e,*, Sompong Putivisutisake,f, Suttichai Assabumrungrata,e

Show more


    • Dolomite was the selected sorbent for sorption enhanced steam reforming. • Dolomite decarbonation kinetics was investigated via multiphase fluid dynamic models. • The sorbent regenerator was preliminary designed in a 2D system. • Used dolomite could be completely regenerated through double stage regenerators.


In this work, the sorption enhanced steam reforming (SESR) method was developed for improved hydrogen (H2) production, and the drawbacks of conventional steam reforming processes on H2 yield and purity were overcome. However, the SESR process is discontinuous and requires regeneration after sorbent saturation with CO2. The circulating fluidized bed reactor (CFBR) system has previously been proposed for continuous H2 production, with both reforming and sorbent regeneration occurring simultaneously. The main aim of this work was to determine the feasibility and performance of SESR with a proper design and conditions in conjunction with the CFBR system. The reforming riser and bubbling bed regenerator are studied separately but related to each other. Two-dimensional transient models using the Euler‒Euler approach and kinetic theory of granular flow were used for fluid dynamic simulations combined with the decarbonation kinetics of dolomite, to investigate a conceptual regenerator system and determine its key conditions. A mixture of the Ni-based catalyst and dolomite from the risers was injected with a flux of 200 kg/(m2 s) and a catalyst to sorbent ratio of 2.54 kg/kg. A double-stage bubbling bed regenerator system was designed with 1.2 m width, 0.8 m bed height, a gas inlet velocity of 0.2 m/s and solid preheating at 950 °C. The used dolomite was regenerated with an assumed CaO conversion of 3%; the almost fresh dolomite was then released with good mixing of the catalyst and sorbent.

Graphical abstract


CaO sorbent; Regenerator; Computational fluid dynamics; Circulating fluidized bed; Multiphase flow model