CFD-DNS simulation of irregular-shaped particle dissolution_中国颗粒学会

在线阅读

Volurnes 48-51 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 50 pp. 144-155 (June 2020)
doi: 10.1016/j.partic.2019.08.003

CFD-DNS simulation of irregular-shaped particle dissolution

Hui Caoa,*, Xiaodong Jiab, Yongliang Lia, Carlos Amadorc, Yulong Dinga

Show more

h.cao@bham.ac.uk

Highlights

    • Irregular shaped particle dissolution is simulated by coupling CFD and DNS. • Simulation is assessed using experimental data and theoretical prediction. • Comprehensive agreement has been achieved.

Abstract

A coupled approach between the conventional computational fluid dynamics platform COMSOL and an in-house-developed direct numerical simulation code DigiDiss is presented to study the dissolution kinetics of an irregular-shaped particle in a stirred cuvette. The complex flow dynamics from COMSOL were imported into DigiDiss as an initial flow condition. A digitised 3D particle structure scanned and reconstructed by X-ray micro-tomography was used in the dissolution simulation. A quantitative assessment of the simulation results was made using as a reference experimental data and a theoretical calculation based on the shrinking spherical model with different flow velocity profiles near the particle. The comprehensive agreement demonstrates the coherence of the simulation method in reproducing the experimental behaviour and is seen as a step closer towards developing a computer software design aide to help with formulation development.

Graphical abstract


Keywords

Single particle dissolution; Computational fluid dynamics; Direct numerical simulation; X-ray micro-tomography