Resonance scattering characteristics of double-layer spherical particles_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 10 no. 1 pp. 117-126 (February 2012)
doi: 10.1016/j.partic.2011.08.004

Resonance scattering characteristics of double-layer spherical particles

Xuejin Dong, Mingxu Su*, Xiaoshu Cai

Show more

sumingxu2002@yahoo.com

Highlights

    ► The resonance frequency for monodisperse particles is related to the particle size. ► We expand the resonance simulation to polydisperse particles. ► The resonance peak is affected by sizes, coverage and concentration of particles.

Abstract

Based on the principle of ultrasonic resonance scattering, sound-scattering characteristics of double-layer spherical particles in water were numerically studied in this paper. By solving the equations of the scattering matrix, the scattering coefficient determined by the boundary conditions can be obtained, thus the expression for the sound-scattering function of a single double-layer spherical particle can be derived. To describe the resonance scattering characteristics of a single particle, the reduced scattering cross section and reduced extinction cross section curves were found through numerical calculation. Similarly, the numerically calculated sound attenuation coefficient curves were used to depict the resonance scattering characteristics of monodisperse and polydisperse particles. The results of numerical calculation showed that, for monodisperse particles, the strength of the resonance was mainly related to the particle size and the total number of particles; while for polydisperse particles, it was primarily affected by the particle size, the coverage of the particle size distribution and the particle concentration.

Graphical abstract

Keywords

Ultrasonic; Resonance scattering; Double-layer; Polydisperse; Visco-elastic