Volurne 42 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)


Partic. vol. 39 pp. 55-67 (August 2018)
doi: 10.1016/j.partic.2017.08.005

Cyclone separation in a supercritical water circulating fluidized bed reactor for coal/biomass gasification: Structural design and numerical analysis

Guoxing Li, Youjun Lu*

Show more


    • Two cyclone separators used under supercritical conditions were devised and compared. • CFD simulation of fluid flow fields and particles flow patterns in the cyclones were performed. • Comparison of particle-separation performance between two cyclones was conducted.


A new concept of a supercritical water (SCW) circulating fluidized bed reactor is proposed to produce hydrogen from coal/biomass gasification. The cyclone is a key component of the reactor system. In this paper, cyclones with a single circular inlet (SCI) or a double circular inlet (DCI) were designed to adapt to the supercritical conditions. We evaluated the separation performance of the two cyclones using numerical simulations. A three-dimensional Reynolds stress model was used to simulate the turbulent flow of the fluid, and a stochastic Lagrangian model was used to simulate the particle motion. The flow fields of both cyclones were three-dimensionally unsteady and similar to those of traditional gas–solid cyclones. Secondary circulation phenomena were discovered and their influence on particle separation was estimated. Analyzing the distribution of the turbulence kinetic energy revealed that the most intensive turbulence existed in the zone near the vortex finder while the flow in the central part was relatively stable. The particle concentration distribution was non-uniform because of centrifugal forces. The distribution area can be divided into three parts according to the motion of the particles. In addition, the separation efficiency of both cyclones increased with the inlet SCW velocity. Because of its perturbance flow, the DCI separator had higher separation efficiency than the SCI separator under comparable simulations. However, this was at the expense of a higher pressure drop across the cyclone.

Graphical abstract


Cyclone; Structural design; Supercritical water–solid flow; Separation performance; Circulating fluidized bed; Computational fluid dynamics