Lagrangian–Eulerian simulation of slugging fluidized bed_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 10 no. 1 pp. 72-78 (February 2012)
doi: 10.1016/j.partic.2011.07.003

Lagrangian–Eulerian simulation of slugging fluidized bed

Guorong Wua, Jie Ouyanga,*, Binxin Yanga, Qiang Lia, Fang Wangb

Show more

jieouyang@nwpu.edu.cn

Abstract

This work studies gas–solid slugging fluidized beds with Type-D particles, using two-dimensional simulations based on discrete element model (DEM). DEM performance is quantitatively validated by two commonly accepted correlations for determining slugging behavior. The voidage profiles simulated with bed height corresponding to Baeyens and Geldart (1974) correlation for onset of slugging demonstrate a transitional flow pattern from free bubbling to slugging. The present calculated values for the maximum slugging bed height are in good agreement with the correlation from Matsen et al. (1969). Simulations show that fluidized beds with Type-D particles can operate in the round-nosed slugging regime and also shows that wall slugs and square-nosed slugs tend to be formed with increase in superficial gas velocity and in bed height, respectively.

Graphical abstract

Voidage profiles from DEM simulations of fluidized beds with Type-D particles show the influences of bed height and superficial gas velocity on slugging modes.


Keywords

Fluidization; Simulation; Discrete element method; Slug flow