Charged ultrafine particle filtration through vehicular cabin air filters_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 28 pp. 1-5 (October 2016)
doi: 10.1016/j.partic.2015.09.012

Charged ultrafine particle filtration through vehicular cabin air filters

Bin Xua, b, *, Yu Gonga, Ya Wua

Show more

binxu@tongji.edu.cn

Highlights

    • Effect of electric charge of vehicular particles on the cabin air filter's filtration was studied. • Filter media played an important role on the filtration efficiency. • Empirical modification improved estimation of filtration efficiency for effect of electric charge.

Abstract

Understanding the effectiveness of cabin air filters is important for assessing human exposure to ultrafine particles (UFPs) of vehicular origin. The filtration efficiency of vehicular UFPs with electric charges was investigated for different electric charge characteristics (charge state, charge polarity). The average filtration efficiency increased ∼10% as the electric charge state on the particles changed in distribution from lightly charged to highly charged. The enhancement of filtration efficiency due to electric charge was different at various filter-face air velocities. As electric charges increased, the filtration efficiency increased 12% and 9% at low air velocity (0.1 m/s) and high air velocity (0.5 m/s), respectively. The filter fiber material poses somewhat effect on the filtration efficiency change due to the electric charge. The effects of filter usage and charge polarity on filtration efficiency due to the electric charge were negligible. A coefficient was empirically derived and successfully accounts for the electric charge effect on UFP filtration efficiency.

Graphical abstract

Keywords

Particle filtration; Electric charge; Filtration efficiency; Vehicular particle