Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 27 pp. 1-28 (August 2016)
doi: 10.1016/j.partic.2016.01.007

Review

Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications

Vijay Kumar, Balasubramanian Kandasubramanian*

Show more

balask@diat.ac.in

Highlights

    • Thermal barrier coating (TBC) processing methods and advances in deposition processes. • TBC design methodologies to address functional requirements. • Correlation of thermal conductivity and microstructure. • TBC research: trends, challenges and future directions.

Abstract

Thermal barrier coating is a crucial thermal insulation technology that enables the underlying substrate to operate near or above its melting temperature. Such coatings bolster engineers’ perpetual desire to increase the power and efficiency of gas turbine engines through increasing the turbine inlet temperature. Advances in recent years have made them suitable for wider engineering and defense applications, and hence they are currently attracting considerable attention. A thermal barrier coating system is itself dynamic; its components undergo recurrent changes in their composition, microstructure and crystalline phases during its service life. Nevertheless, the performance of multi-layered and multi-material systems tailored for high temperature applications is closely linked to the deposition process. The process improvements achieved so far are the outcome of increased understanding of the relationship between the coating morphology and the operating service conditions, as well as developments in characterization techniques. This article presents a comprehensive review of various processing techniques and design methodologies for thermal barrier coatings. The emphasis of this review is on the particle technology; the interrelationship between particle preparation, modification and the resulting properties, to assist developments in advanced and novel thermal barrier coatings for engineering applications.

Graphical abstract

Keywords

Thermal barrier coating; Air plasma spray; Electron beam-physical vapor deposition; Thermally grown oxide; Yttria-stabilized zirconia; Thermal conductivity