Theoretical search for solutions to minimize negative influence of segregation in mixing of particulate solids_中国颗粒学会

在线阅读

Volurnes 72-75 (2023)

Volurnes 60-71 (2022)

Volurnes 54-59 (2021)

Volurnes 48-53 (2020)

Volurnes 42-47 (2019)

Volurnes 36-41 (2018)

Volurnes 30-35 (2017)

Volurnes 24-29 (2016)

Volurnes 18-23 (2015)

Volurnes 12-17 (2014)

Volurne 11 (2013)

Volurne 10 (2012)

Volurne 9 (2011)

Volurne 8 (2010)

Volurne 7 (2009)

Volurne 6 (2008)

Volurne 5 (2007)

Volurne 4 (2006)

Volurne 3 (2005)

Volurne 2 (2004)

Volurne 1 (2003)

在线阅读

Partic. vol. 25 pp. 36-41 (April 2016)
doi: 10.1016/j.partic.2015.05.002

Theoretical search for solutions to minimize negative influence of segregation in mixing of particulate solids

Vadim Mizonova,*, Henri Berthiauxb, Cendrine Gatumelb

Show more

mizonov46@mail.ru

Highlights

    • A non-linear Markov chain model for segregating particulate solids mixing was proposed. • Optimal solutions were obtained for batch mixers with time-distributed load and one-time load. • Mixing with internal circulation of segregating component allowed to reach homogeneous mixture.

Abstract

The objective of this study is to examine several optimization problems in the batch mixing of segregating particulate solids that can be set up and solved using Markov chain models. To improve the adequacy of such models and exclude some physical contradictions that arise in the linear form, a non-linear Markov chain model for the mixing of segregating components is proposed. Optimal solutions are obtained by controlling the particle flow outside the mixing operating volume while the components are being loaded, modifying particle circulation inside the mixing zone during the process, and by structuring the load in the mixing zone. Solutions are found that not only reduce the negative influence of segregation, but also exclude it altogether. The gain resulting from optimization grows with the rate of segregation. The optimal solutions presented here can be used to improve the design of mixers.

Graphical abstract

Keywords

Mixing; Segregation; Mixture quality; Markov chain; Optimization